S ep 2 00 6 Differential Forms and the Wodzicki Residue for Manifolds with Boundary ∗

نویسنده

  • Yong Wang
چکیده

In [3], Connes found a conformal invariant using Wodzicki’s 1-density and computed it in the case of 4-dimensional manifold without boundary. In [14], Ugalde generalized the Connes’ result to n-dimensional manifold without boundary. In this paper, we generalize the results of [3] and [14] to the case of manifolds with boundary. Subj. Class.: Noncommutative global analysis; Noncommutative differential geometry. MSC: 58G20; 53A30; 46L87

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S ep 2 00 6 Gravity and the Noncommutative Residue for Manifolds with Boundary ∗

We prove a Kastler-Kalau-Walze type theorem for the Dirac operator and the signature operator for 3, 4-dimensional manifolds with boundary. As a corollary, we give two kinds of operator theoretic explanations of the gravitational action in the case of 4-dimensional manifolds with flat boundary. Subj. Class.: Noncommutative global analysis; Noncommutative differential geometry. MSC: 58G20; 53A30...

متن کامل

Riemannian Geometry on Loop Spaces

A Riemannian metric on a manifold M induces a family of Riemannian metrics on the loop space LM depending on a Sobolev space parameter. In Part I, we compute the Levi-Civita connection for these metrics. The connection and curvature forms take values in pseudodifferential operators (ΨDOs), and we compute the top symbols of these forms. In Part II, we develop a theory of Chern-Simons classes CS ...

متن کامل

S ep 2 00 7 LOGARITHMS AND SECTORIAL PROJECTIONS FOR ELLIPTIC BOUNDARY PROBLEMS

On a compact manifold with boundary, consider the realization B of an elliptic, possibly pseudodifferential, boundary value problem having a spectral cut (a ray free of eigenvalues), say R − . In the first part of the paper we define and discuss in detail the operator logB; its residue (generalizing the Wodzicki residue) is essentially proportional to the zeta function value at zero, ζ(B, 0), a...

متن کامل

ar X iv : h ep - t h / 03 05 03 7 v 2 3 0 M ay 2 00 3 FORMS ON VECTOR BUNDLES OVER COMPACT REAL HYPERBOLIC MANIFOLDS

We study gauge theories based on abelian p− forms on real compact hyperbolic manifolds. The tensor kernel trace formula and the spectral functions associated with free generalized gauge fields are analyzed.

متن کامل

The Local and Global Parts of the Basic Zeta Coefficient for Operators on Manifolds with Boundary

For operators on a compact manifold X with boundary ∂X, the basic zeta coefficient C0(B, P1,T ) is the regular value at s = 0 of the zeta function Tr(BP −s 1,T ), where B = P+ +G is a pseudodifferential boundary operator (in the Boutet de Monvel calculus) — for example the solution operator of a classical elliptic problem — and P1,T is a realization of an elliptic differential operator P1, havi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008